Trellis Tutorial
An Open-Source, White-Box, SDN Based Leaf-Spine Network Fabric

Charles Chan
Open Networking Foundation
Trellis
Multi-purpose leaf-spine fabric designed for NFV

Open Source Software

White Box Hardware

SDN Based
Trellis Features

- Bridging
- Routing
- VLAN
- L3 DHCP Relay
- vRouter
- IPv6
- Dual Homing
- and more...
Prerequisite

- ONOS
- Mininet
- DHCP Server
- Quagga & BGP
{ "devices": {
 "of:0000000000000204": {
 "segmentrouting": {
 "name": "s204",
 "ipv4NodeSid": 204,
 "ipv4Loopback": "192.168.0.204",
 "routerMac": "00:00:00:00:02:04",
 "isEdgeRouter": true,
 "adjacencySids": []
 },
 "basic": {
 "name": "s204",
 "driver": "ofdpa-ovs"
 }
 }
}
Device

Unused. This name doesn’t really matter. Will be deprecated.

```json
{
    "devices": {
        "of:0000000000000204": {
            "segmentrouting": {
                "name": "s204",
                "ipv4NodeSid": 204,
                "ipv4Loopback": "192.168.0.204",
                "routerMac": "00:00:00:00:02:04",
                "isEdgeRouter": true,
                "adjacencySids": []
            },
            "basic": {
                "name": "s204",
                "driver": "ofdpa-ovs"
            }
        }
    }
}
```
Device

```
{
  "devices": {
    "of:0000000000000204": {
      "segmentrouting": {
        "name": "s204",
        "ipv4NodeSid": 204,
        "ipv4Loopback": "192.168.0.204",
        "routerMac": "00:00:00:00:02:04",
        "isEdgeRouter": true,
        "adjacencySids": []
      },
      "basic": {
        "name": "s204",
        "driver": "ofdpa-ovs"
      }
    }
  }
}
```

Segment ID.
Can be an arbitrary value but need to be unique in the system.
Also used as the MPLS label when doing segment routing.
Do not use reserved MPLS labels (i.e. <=16).
Device

```
{
  "devices": {
    "of:0000000000000204": {
      "segmentrouting": {
        "name": "s204",
        "ipv4NodeSid": 204,
        "ipv4Loopback": "192.168.0.204",
        "routerMac": "00:00:00:00:00:02:04",
        "isEdgeRouter": true,
        "adjacencySids": []
      },
      "basic": {
        "name": "s204",
        "driver": "ofdpa-ovs"
      }
    }
  }
}
```

Loopback address of the switch. Can be an arbitrary value (e.g. the management IP) but need to be unique in the system.
Device

```json
{
  "devices": {
    "of:0000000000000204": {
      "segmentrouting": {
        "name": "s204",
        "ipv4NodeSid": 204,
        "ipv4Loopback": "192.168.0.204",
        "routerMac": "00:00:00:00:02:04",
        "isEdgeRouter": true,
        "adjacencySids": []
      },
      "basic": {
        "name": "s204",
        "driver": "ofdpa-ovs"
      }
    }
  }
}
```

Use for ARP reply when host ARPs its gateway. Can be an arbitrary value (e.g. the management MAC) but need to be unique in the system.
Device

```
{
  "devices": {
    "of:00000000000204": {
      "segmentrouting": {
        "name": "s204",
        "ipv4NodeSid": 204,
        "ipv4Loopback": "192.168.0.204",
        "routerMac": "00:00:00:00:02:04",
        "isEdgeRouter": true,
        "adjacencySids": []
      },
      "basic": {
        "name": "s204",
        "driver": "ofdpa-ovs"
      }
    }
  }
```

True for leaves. False for spines.
Device

{
 "devices": {
 "of:0000000000000204": {
 "segmentrouting": {
 "name": "s204",
 "ipv4NodeSid": 204,
 "ipv4Loopback": "192.168.0.204",
 "routerMac": "00:00:00:00:02:04",
 "isEdgeRouter": true,
 "adjacencySids": []
 },
 "basic": {
 "name": "s204",
 "driver": "ofdpa-ovs"
 }
 }
 }
}
This is the name that does matter.
Will be displayed in GUI
Device

```json
{
    "devices": {
        "of:0000000000000204": {
            "segmentrouting": {
                "name": "s204",
                "ipv4NodeSid": 204,
                "ipv4Loopback": "192.168.0.204",
                "routerMac": "00:00:00:00:02:04",
                "isEdgeRouter": true,
                "adjacencySids": []
            },
            "basic": {
                "name": "s204",
                "driver": "ofdpa-ovs"
            }
        }
    }
}
```

Driver.
- **ofdpa-ovs** for OpenvSwitch.
- **ofdpa3** for Broadcom XGS (Trident2, Tomahawk)
- **qmx-ofdpa3** for Broadcom QMX
Port - VLAN Untagged

```json
{
    "ports": {
        "of:0000000000000204/3": {
            "interfaces": [
                {
                    "ips": ["10.0.2.254/24"],
                    "vlan-untagged": 20
                }
            ]
        }
    }
}
```

DPID/port number

Equivalent to access port. Expecting untagged packet and will push VLAN 20.
Port - VLAN Tagged

```
{
  "ports": {
    "of:00000000000000204/4": {
      "interfaces": [
        {
          "ips": ["10.0.2.254/24"],
          "vlan-tagged": [20]
        }
      ]
    }
  }
}
```

Equivalent to trunk port.
Expecting VLAN 20 tagged packet and will keep the tag.
It is possible to have more than one trunk VLAN.
Port - VLAN Tagged with Native

```json
{
    "ports": {
        "of:0000000000000205/3": {
            "interfaces": [
                {
                    "ips": ["10.0.3.254/24", "10.0.4.254/24"],
                    "vlan-tagged": [30],
                    "vlan-native": 40
                }
            ]
        }
    }
}
```

Equivalent to trunk port with native VLAN.
Expecting VLAN 30 tagged packet and will keep the tag.
Also expecting untagged packet and will push VLAN 40
Port - Subnet

Two information can be derived from the subnet config:
(1) The interface IP on the switch is 10.0.3.254
(2) The subnet on this interface is 10.0.3.0/24

Currently we don’t map between subnet and VLAN.
VLAN information is solely used for defining bridging domain.
Subnet information is solely used for routing.
There are some confusions. Will have 1-to-1 mapping in the future.
L3 DHCP Relay
L3 DHCP Relay

```
{
  "apps": {
    "org.onosproject.dhcprelay": {
      "default": [
        {
          "dhcpServerConnectPoint": "of:00000000000000205/6",
          "serverIps": ["10.0.3.253"]
        }
      ]
    }
  }
}
```

The location where the DHCP server is attached to
The IP address of DHCP server
dhcpd.conf

subnet 10.0.2.0 netmask 255.255.255.0 {
 range 10.0.2.100 10.0.2.240;
 option routers 10.0.2.254;
}

subnet 10.0.3.0 netmask 255.255.255.0 {
 range 10.0.3.100 10.0.3.240;
 option routers 10.0.3.254;
}

subnet 10.0.4.0 netmask 255.255.255.0 {
 range 10.0.4.100 10.0.4.240;
 option routers 10.0.4.254;
}

host h1 {
 hardware ethernet 00:aa:00:00:00:01;
 fixed-address 10.0.2.1;
}
dhcpd.conf

subnet 10.0.2.0 netmask 255.255.255.0 {
 range 10.0.2.100 10.0.2.240;
 option routers 10.0.2.254;
}

subnet 10.0.3.0 netmask 255.255.255.0 {
 range 10.0.3.100 10.0.3.240;
 option routers 10.0.3.254;
}

subnet 10.0.4.0 netmask 255.255.255.0 {
 range 10.0.4.100 10.0.4.240;
 option routers 10.0.4.254;
}

host h1 {
 hardware ethernet 00:aa:00:00:00:01;
 fixed-address 10.0.2.1;
}
dhcpd.conf

subnet 10.0.2.0 netmask 255.255.255.0 {
 range 10.0.2.100 10.0.2.240;
 option routers 10.0.2.254;
}

subnet 10.0.3.0 netmask 255.255.255.0 {
 range 10.0.3.100 10.0.3.240;
 option routers 10.0.3.254;
}

subnet 10.0.4.0 netmask 255.255.255.0 {
 range 10.0.4.100 10.0.4.240;
 option routers 10.0.4.254;
}

host h1 {
 hardware ethernet 00:aa:00:00:00:01;
 fixed-address 10.0.2.1;
}
dhcpd.conf

```plaintext
subnet 10.0.2.0 netmask 255.255.255.0 {
    range 10.0.2.100 10.0.2.240;
    option routers 10.0.2.254;
}

subnet 10.0.3.0 netmask 255.255.255.0 {
    range 10.0.3.100 10.0.3.240;
    option routers 10.0.3.254;
}

subnet 10.0.4.0 netmask 255.255.255.0 {
    range 10.0.4.100 10.0.4.240;
    option routers 10.0.4.254;
}

host h1 {
    hardware ethernet 00:aa:00:00:00:01;
    fixed-address 10.0.2.1;
}
```

We can also have static IP assignment
Quagga and upstream router need to be in the same VLAN and subnet on the same leaf.

We need 3 IPs in the subnet. 1 for Quagga, 1 for upstream router, 1 for leaf switch interface. /29 is the minimum subnet.
Route Map

- Quagga announces leaf switch, instead of quagga itself, as the next hop to the internal network
Quagga - bgpd.conf

```plaintext
ip prefix-list 1 seq 10 permit 10.0.2.0/24
ip prefix-list 1 seq 20 permit 10.0.3.0/24

route-map NEXTHOP41 permit 10
match ip address prefix-list 1
set ip next-hop 10.0.1.254

neighbor 10.0.1.1
remote-as 65001
neighbor 10.0.1.1 ebgp-multihop
neighbor 10.0.1.1 timers connect 5
neighbor 10.0.1.1 advertisement-interval 5
neighbor 10.0.1.1 route-map NEXTHOP41 out

network 10.0.2.0/24
network 10.0.3.0/24
```

List of prefixes we want to announce
Quagga - bgpd.conf

ip prefix-list 1 seq 10 permit 10.0.2.0/24
ip prefix-list 1 seq 20 permit 10.0.3.0/24

route-map NEXTHOP41 permit 10
match ip address prefix-list 1
set ip next-hop 10.0.1.254

neighbor 10.0.1.1
remote-as 65001
neighbor 10.0.1.1 ebgp-multihop
neighbor 10.0.1.1 timers connect 5
neighbor 10.0.1.1 advertisement-interval 5
neighbor 10.0.1.1 route-map NEXTHOP41 out

network 10.0.2.0/24
network 10.0.3.0/24

Define the route map and its name
Quagga - bgpd.conf

```
ip prefix-list 1 seq 10 permit 10.0.2.0/24
ip prefix-list 1 seq 20 permit 10.0.3.0/24

route-map NEXTHOP41 permit 10
match ip address prefix-list 1
set ip next-hop 10.0.1.254

neighbor 10.0.1.1
remote-as 65001
neighbor 10.0.1.1 ebgp-multihop
neighbor 10.0.1.1 timers connect 5
neighbor 10.0.1.1 advertisement-interval 5
neighbor 10.0.1.1 route-map NEXTHOP41 out

network 10.0.2.0/24
network 10.0.3.0/24
```
Quagga - bgpd.conf

ip prefix-list 1 seq 10 permit 10.0.2.0/24
ip prefix-list 1 seq 20 permit 10.0.3.0/24

route-map NEXTHOP41 permit 10
match ip address prefix-list 1
set ip next-hop 10.0.1.254

neighbor 10.0.1.1
remote-as 65001
neighbor 10.0.1.1 ebgp-multihop
neighbor 10.0.1.1 timers connect 5
neighbor 10.0.1.1 advertisement-interval 5
neighbor 10.0.1.1 route-map NEXTHOP41 out

network 10.0.2.0/24
network 10.0.3.0/24

Set the leaf switch, instead of Quagga itself, as the next hop for these prefixes
Quagga - bgpd.conf

```plaintext
ip prefix-list 1 seq 10 permit 10.0.2.0/24
ip prefix-list 1 seq 20 permit 10.0.3.0/24

route-map NEXTHOP41 permit 10
match ip address prefix-list 1
set ip next-hop 10.0.1.254

neighbor 10.0.1.1
remote-as 65001
neighbor 10.0.1.1 ebgp-multihop
neighbor 10.0.1.1 timers connect 5
neighbor 10.0.1.1 advertisement-interval 5
neighbor 10.0.1.1 route-map NEXTHOP41 out

network 10.0.2.0/24
network 10.0.3.0/24
```

BGP peer information
Quagga - bgpd.conf

ip prefix-list 1 seq 10 permit 10.0.2.0/24
ip prefix-list 1 seq 20 permit 10.0.3.0/24

route-map NEXTHOP41 permit 10
match ip address prefix-list 1
set ip next-hop 10.0.1.254

neighbor 10.0.1.1
remote-as 65001
neighbor 10.0.1.1 ebgp-multihop
neighbor 10.0.1.1 timers connect 5
neighbor 10.0.1.1 advertisement-interval 5
neighbor 10.0.1.1 route-map NEXTHOP41 out

network 10.0.2.0/24
network 10.0.3.0/24

Announce the route map to the neighbor
Quagga - bgpd.conf

```
ip prefix-list 1 seq 10 permit 10.0.2.0/24
ip prefix-list 1 seq 20 permit 10.0.3.0/24

route-map NEXTHOP41 permit 10
match ip address prefix-list 1
set ip next-hop 10.0.1.254

neighbor 10.0.1.1
remote-as 65001
neighbor 10.0.1.1 ebgp-multihop
neighbor 10.0.1.1 timers connect 5
neighbor 10.0.1.1 advertisement-interval 5
neighbor 10.0.1.1 route-map NEXTHOP41 out

network 10.0.2.0/24
network 10.0.3.0/24
```

Networks that are reachable from Quagga
FPM (Forwarding Plane Manager)
Quagga - zebrad.conf

```
ip route 0.0.0.0/0 172.16.0.1
```
(Optional) Point default route to management network

```
fpm connection ip 192.168.56.11 port 2620
```
FPM connection to ONOS IP. Need to be reachable from Quagga
Demo Topology

Q: Quagga, R: Upstream Router, D: DHCP Server

Q:
R:
D:

of:226
of:227
of:204
of:205

h1
h2
h3
h4
rh1
D

Src mac: routerMac of of:205
Dst mac: routerMac of of:226
MPLS label: 204
Src IP: h3
Dst IP: h1

10.0.2.1
VLAN None
10.0.2.2
VLAN 20
10.0.3.1
VLAN 30
10.0.4.254
VLAN None
Demo Topology

Q: Quagga, R: Upstream Router, D: DHCP Server
Demo Topology

Q: Quagga, R: Upstream Router, D: DHCP Server

Q:
R:
D:

10.0.2.1 VLAN None
10.0.2.2 VLAN 20
10.0.3.1 VLAN 30
10.0.4.254 VLAN None

10.0.2.254 10.0.2.254
10.0.3.254 10.0.4.254
10.0.3.253

of:204
of:205
of:226
of:227

Q:
R:
D:

10.0.1.2
10.0.1.1
10.0.99.1
10.0.99.2

h1
h2
h3
h4

Src mac: routerMac of of:204
Dst mac: h1
Src IP: h3
Dst IP: h1
Demo

Scripts and configurations will be available at https://github.com/opennetworkinglab/routing/tree/master/trellis after this event
Thank you!

Visit http://wiki.opencord.org for more information