Enterprise CORD Hands-On

Marc De Leenheer, Andrea Campanella, ONF

CORD Build, QCT headquarters, San Jose
November 10, 2017
Outline

• E-CORD recap
• Building E-CORD
 ▪ Wiring diagram
 ▪ Configuration
• Developing for E-CORD
 ▪ Dev environment
 ▪ Carrier Ethernet
• Continuous Integration / Deployment
 ▪ Jenkins
 ▪ E-CORD Test Subscriber
• E-CORD Guide
• Q&A
E-CORD Value Proposition

Virtual Network as a Service
- Self-serve portal
- Zero touch provisioning
- Simple on-prem
- Combination of broadband and SLA connections

Integrated Analytics
- Observe, Control, Adapt
- Programmable probes
- On-demand monitoring

Custom Services for Enterprises
- Security
- Application policy control
- WAN acceleration
- ...

Carrier-grade Network as a Service
Built on an open platform
Bring data center economy and cloud agility
Start with **bill of materials**

Follow the wiring diagram

Configure the PODs

Service provisioning
Bill of Materials (ONF pod)

- **Used for dev and data plane testing**
- **3 local PODs**, each one is
 - CPE: 1x Microsemi EA1000
 - Ethernet Edge: 1x Centec V350
 - Fabric: 1x Edgecore AS6712-32X
 - Head node and compute node
 - 2x Quanta (QCT) QuantaGrid D51B-1U
- **1 global node**:
 - 1 x Quanta (QCT): QuantaGrid D51B-1U
Local POD Configuration

JSON Files

CPE info
Links
Global endpoint config

Fabric cross connect
Global endpoint config

Local CORD POD

Access ONOS

CPE
EE

Fabric ONOS

Fabric
Global Node Configuration

Global CORD Node

YAML
- Bandwidth profiles
- ONOS endpoint
- *UNI information*

JSON
- Local sites location

XOS
```
python run_tosca.py 9000
xosadmin@opencord.org YOUR_XOS_PASSWORD
PATH_TO_YOUR_TOSCA_FILE
```

Global ONOS
```
```
Developing for E-CORD

CORD relies heavily on git/repo for version control and gerrit for code review
 • https://gerrit.opencord.org

Setting up dev environment can be done in hardware or software

Critical software piece is Carrier Ethernet app for orchestration and provisioning
E-CORD services are defined in the profile manifests

- Global node: `ecord-global.yaml`
- Local pod: `ecord.yaml`

These services are deployed in either software or hardware environment

Software: CORD-in-a-Box (CiaB) or developer’s machine
Hardware: BOM
Software Development Environment

Environment choice depends on required feature set

Software deployments uses CORD-in-a-Box (CiaB) or your local machine

- ecord-global/local-single.yaml → your machine
- ecord-global/local-mock.yaml → your machine frontend/API only
- ecord-local-virtual.yaml → CiaB with OpenStack
Hardware Dev Environment (ONF)

• **Used for dev and data plane testing**

• **3 Local PODs**, each one is
 – CPE: 1x Microsemi EA1000
 – Ethernet Edge: 1x Centec V350
 – Fabric: 1x Edgecore AS6712-32X
 – Head node and compute node
 2x Quanta (QCT) QuantaGrid D51B-1U

• **1 Global Node:**
 – 1 x Quanta (QCT): QuantaGrid D51B-1U
Hardware Dev Environment (QCT)

- Used for build, deployment and API tests only

- 1 Local POD
 - Fabric: Edgecore AS6712-32X
 - Head node and compute node: 2x Quanta (QCT): QuantaGrid D51B-1U

- 1 Global Node
 - 1 x Quanta (QCT): QuantaGrid D51B-1U
Carrier Ethernet Application

• Carrier Ethernet is the app we use for global and local orchestration
• Common APIs org.opencord.ce-api
• Global org.opencord.ce.global
• Local org.opencord.ce.local.bigswitch,org.opencord.ce.local.channel.http, Fabric org.opencord.ce.local.fabric, Cord org.opencord.ce.local.vee
• OAM/CFM functionality included in ONOS & driver behaviour (covered this afternoon)
Carrier Ethernet Application

*Manager class translates forwarding constructs (FC) into hardware specific configuration.

Access VeeManager → FC to Metering in EE and vlan tagging into CPE

Fabric FabricManager → FC to segment routing config

Transport TransportManager → FC into OpticalConnectivityIntent

Adapt to your network through a new manager
Jenkins: Continuous Deployment and Testing

• Automated Nightly Deployment
 – All ONF Pods and global node
 – All QCT Pods and global node

• Automated Nightly Testing
 – XOS and Service installation
 – ONOS applications present and configured
 – Fabric, Head-Nodes, Compute-Nodes Provisioning

• 1 local POD and one global node **builds and test always happen nightly**

Constant feedback on the status of the software

No regressions Functionality maintained
TEST E-CORD Subscriber

Test the E-CORD local service chain:

- `cd /opt/cord/build/platform-install`
- `ansible-playbook -i inventory/head-localhost --extra-vars "@/opt/cord_profile/genconfig/config.yml" ecord-test-subscriber-playbook.yml`
E-CORD Guide

Overview:
https://guide.opencord.org/profiles/ecord/overview.html

Installation and Demo:
https://guide.opencord.org/profiles/ecord/installation_guide.html
Partners and Collaborators

Partners

- CORD™
 Central Office Re-architected as a Datacenter
- ONF
 Open Networking Foundation
- China Unicom
- China Mobile
- Nokia
- Microsemi
Future work and collaboration opportunities

Services, services, services
• E.g., firewall, WAN accelerator, encryption, ...
• Open and closed source versions

Device Integration
• CPE
• Ethernet Edge

Multi-Access CORD
• \(\{R,E,M\}\)-CORD service chains co-existing in the same pod

ONAP Integration
Further Reading

CORD website:
http://opencord.org
Tutorials, documentation and general reading at:
CORD is on Github at:
https://github.com/opencord
ONOS Transport wiki:
https://goo.gl/UiMauo
Mailing List:
cord-dev@opencord.org
cord-discuss@opencord.org

By email:
marc@opennetworking.org
andrea@opennetworking.org
Questions