CORD: Putting the Pedal to the Metal

Larry Peterson
ONF
CORD and Car Analogies

CORD is like a car in that it is an integrated whole, as opposed to a pile of parts that must be assembled.

→ Yes, but it doesn’t just use off-the-shelf components.

CORD is like a concept car.

→ Yes, but it’s built to be driven on the street, not just admired in the showroom.
Halo Car

“...goes out of its way to push the technology…”

“...spurs the imagination…”

“...closest thing to a concept car you can find on the street…”

“...the technology developed is often incorporated into future production vehicles…”
Edge Service Delivery Platform

Users → Access Edge → Telco Cloud → Commodity Clouds
1) Built around commodity servers and white-box switches, and to the extent possible, leverages merchant silicon.

2) Enables disaggregation, and is not restricted to running bundled legacy VNFs in virtual machines.

3) Leverages SDN to both interconnect the virtual and physical elements and as a source of innovative services.

4) Leverages an extensible platform that can be configured to include multiple access technologies and services.

5) Adopts best practices in building, composing, and operating scalable multi-tenant cloud services.
(1) Built using commodity servers and white-box switches
 Leverage merchant silicon
 Achieve performance and reliability in software

(2) Support a wide range of services
 Bundled Legacy and Disaggregated Greenfield
 Server-based (NFV) and Switch-based (SDN)

(3) Built as an extensible platform
 Scale hardware up/down to meet performance requirements
 Select access devices and services to meet functional needs
 Leverage declarative models to configure and control
Architectural Requirements

(4) Support multi-tenancy
 Platform isolates multiple business units and service vendors
 Each service isolates multiple end-users (subscribers)

(5) Operationally robust
 Adopts best practices in scalable cloud design
 Supports zero-touch provisioning
Pushing Technology Boundaries

Merchant Silicon
- Disaggregation
- Extensible Platform
- Multi-Tenant

Bring Cloud Technology to the Access Network
Bring Access Technology to the Cloud
Edge Service Delivery Platform

Bring Cloud Technology to the Access Network

Bring Access Technology to the Edge Cloud
Access Edge

R-CORD: VOLTHA (XGS-PON)
M-CORD: xRAN

E-CORD: VNaaS

TRELLIS: Fabric + Overlay

OpenStack/Kubernetes

ROADM (Core)
CORD Architecture

CORD Controller

ONOS

OpenStack / K8S

Ctrl App

VNF

OCP Hardware

Commodity Servers
White-Box Switches
Merchant Silicon Access
CORD Architecture

Virtualization Agnostic
- VMs
- Containers
- Micro-Services
- ...

Instruction Set Agnostic
- Server-based (VNF)
- Switch-based (SDN)
- ...

(Req 2,5)
CORD Architecture

- **ONOS**
- **OpenStack / K8S**
- **Trellis**
 - Fabric
 - VTN
 - vRouter
 - MCAST
CORD Architecture

- **R-CORD** – vOLT
- **R-CORD** – vOLTHA
 - vSG / vBNG

CORD Controller

- Ctrl App
- VNF

ONOS

OpenStack / K8S

OCP Hardware
CORD Architecture

- CORD Controller
- ONOS
- OpenStack / K8S
- OCP Hardware
- Ctrl App
- VNF

M-CORD – xRAN
M-CORD – vEPC
CORD Architecture

Virtualization Agnostic
- VMs
- Containers
- Micro-Services
- ...

Instruction Set Agnostic
- Server-based (VNF)
- Switch-based (SDN)
- ...

CORD Controller

ONOS

OpenStack / K8S

OCP Hardware

Ctrl App

VNF

(Req 2,5)
CORD Architecture

Provisions Services
Mediates Trust
Enforces Policies
Assembles Data Paths

(Cord Controller)

- Ctrl App
- VNF

ONOS
OpenStack / K8S

OCP Hardware

(Req 3,4)
CORD Architecture

CORD Controller

Service Control Plane

Service Data Plane

ONOS

OpenStack / K8S

VNF

Ctrl App

OCP Hardware

CORD Controller

Service Control Plane

Service Data Plane
XOS Constructed from Micro-Services

CORD Controller (XOS) =

GUI
REST API
TOSCA
VIM

Event Bus
XOS
Core
DB

Views (UIs)

Data Model

Synchronizers

Backend Services and Resources
XOS Generative Toolchain

Language to Define & Operate on Models
- xproto
 models: protobufs + extensions
 policies: logic formulae applied to models

Generative Tool Chain
- xosgen

Auto-generated code to...
implement interfaces, execute synchronizers, enforce security
test end-to-end integration, validate consistency, apply policy
policy grant_policy < ctx.user.is_admin
 | exists Privilege:Privilege.object_type = obj.object_type
 & Privilege.object_id = obj.object_id
 & Privilege.accessor_type = "User"
 & Privilege.accessor_id = ctx.user.id
 & Privilege.permission = "role:admin" >

message Privilege::grant_policy (XOSBase)
{ required int32 accessor_id = 1 [null = False];
 required string accessor_type = 2 [null = False, max_length=1024];
 required int32 controller_id = 3 [null = True];
 required int32 object_id = 4 [null = False];
 required string object_type = 5 [null = False, max_length=1024];
 required string permission = 6 [null = False, default = "all", max_length=1024];
 required string granted = 7 [content_type = "date", auto_now_add = True, max_length=1024];
 required string expires = 8 [content_type = "date", null = True, max_length=1024]; }
XOS Generative Toolchain

- GUI
- REST API
- TOSCA
- VIM

Generated Code
- API Tests
- Northbound Interfaces
- Enforce Security Policy
- Object Relation Mapper
- Synchronizer Framework
Synchronizer Framework

XOS auto-generates code for…
- Dependency management
- Error recovery
- Work partitioning
- Parallelization
- Logging

Service developer writes…

A `Sync_Step()` that is invoked when Service model changes

An *Ansible Template* that specifies a VNF-specific playbook
Models and Frameworks

Previous five slides have been about mechanism

XOS is a framework for specifying and evaluating models

CORD also includes a set of core models

Familiar building blocks – Instances, Networks
Virtualization-agnostic infrastructure – Slice
ISA-agnostic Service graph – Service, ServiceDependency
Subscribers – CordSubscriberRoot
Per-user service chains – ServiceInstance, ServiceInstanceLink
Instance = (VM | Container | Container-in-VM)
Slice = (Instances[] + Networks[])
Service = (Controller + Slices[])
Service Graph = (Services[] + Dependencies[])

Core Models
Core Models

Service Graph

R-CORD Service

Controller
- vOLT

Controller
- vSG

Controller
- vRouter

Subscriber

Service Chain =
(ServiceInstances[] + ServiceInstanceLinks[])
Core Models

- eNB
- Controller
- vMME
- Controller
- vSPGW-c
- Controller
- SPGW Control
- Controller
- vSPGW-u
- Controller
- vHSS

EPC-as-a-Service

Nested Services
Network Slicing
Serves multiple masters...

Developers that want tight development loops for the components they are working on.

Integrators that want flexible configurability to combine and test targeted solutions.

Operators that want determinist builds that include only certified components and supports zero-touch.
Multi-Stage Build System

Configure

```
cord_profile: rcord, mcord, ecord,...
cord_scenario: local, mock, single, cord,...
```

Build

Fetch – onto development machine
Build – containers (if necessary)
Publish – to repository on head node
Multi-Stage Build System

Deploy

- Run management containers (XOS, ONOS, OpenStack) on head node
- Docker Compose today / plans to have Kubernetes help manage

Boot

- Bring up compute nodes and switches
- Leverage MAAS and PXE
A set of YAML files represents all configuration state

→ All builds start at `build/podconfig/profile-scenario.yml`

A set of Docker images define the canonical representation of the system

→ Makes it easier to identify “golden” components
→ Makes it easier to iterate on a specific component during development

A set of Ansible roles separates configuring/installing/deploying containers

→ Makes it easy to adapt CORD to new scenarios

A sequence of Make targets represent build milestones

→ Makes it easy to roll back and incrementally re-build
Having built CORD from commodity hardware and disaggregated software services, the operator has wide latitude in how to reassemble the building blocks.

Two Adjustable Levers

Sizing – Number and mix of hardware components
Configuration – Set of on-boarded software services
Scale Up – Hardware

Full POD
(Up to 16 Racks with 32x40GE switches)
Scale Up – Software

Provision Services On-Demand
Scale Down – Lite-and-Right CORD

- Single/Partial Rack (No Spine Switches)
- Minimal Compute (All services run in containers)
- Merchant Silicon Access Blades (e.g., OLT)

If you also “scale down” the software so the Service Graph includes just vOLT, the resulting configuration = “White-Box OLT”
Multi-Access Edge Cloud

CORD Controller

- Controller
 - vOLT
 - vBBU
 - vEE

- ... R-CORD Sub-Graph...
- ... M-CORD Sub-Graph...
- ... E-CORD Sub-Graph...

Access Devices = OLT + BBU + ETH
Service Portfolio (4.1)

vSG – Virtual Subscriber Gateway
vOLT – Virtual OLT
vRouter – Virtual Router
vEG – Virtual Enterprise Gateway
vEE – Virtual Enterprise Ethernet
vHSS – Virtual Home Subscriber Server
vMME – Virtual Mobility Management Entity
vEPC – Virtual Evolved Packet Core
vTR – Virtual Truck Roll
HyperCache – Akamai CDN
SGW – Virtual Serving Gateway (User)
vSGWc – Virtual Serving Gateway (Control)
vPGW – Virtual Packet Gateway (User)
vPGWc – Virtual Packet Gateway (Control)
vBBU – Virtual Broadband Base Unit
xRAN – Virtual Radio Access Network

ONOS – Network OS
OpenStack – Infrastructure-as-a-Service
Swarm – Container Management Service
Fabric – Fabric Management Service
VTN – Virtual Tenant Network
A-CORD – Monitoring-as-a-Service
LBaaS – LoadBalancer-as-a-Service
VNaaS – VirtualNetwork-as-a-Service

Helper Services
AAA – Access Control
AddressManager – Allocate IP Addresses
IGMP – Multicast Signalling
MCAST – Multicast
SADIS – xxx
CORD and ONAP

Design Studio
ONAP (Global)
Provisions and Orchestrates Services (Multi-Tenant Platform)

Customer Portal
Subscriber Database (Global)
Returns Subscriber Profiles (Multi-Tenant Service)

CORD (Local)
Assemble Per-Subscriber Data Paths Across Disaggregated Services and White-Box Switches

DCAE Collectors
Database Cache
A-CORD – Monitoring-as-a-Service

Monitoring-as-a-Service

Programmable Observability
- Configuration
- Collection

Data Storage
- TSDB

Real-time Analytic Apps
Diagnostic Analytic Apps
Security Analytic Apps

Control Decision

Program & Observe

Observed Data
Change Observability

Control

Enterprise Metro Ethernet
BBUs (Multi-RATs)
PON OLT MACs
VNF
VNF

ROADM (Core)

CORD Controller

MaaS
Learn About CORD

Hands-on CORD learning and skill development
Developed and Hosted by Criterion Networks
In collaboration with ONF

Online subscription-based pricing model
Now in Beta (by invitation)

<table>
<thead>
<tr>
<th></th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lab</td>
<td>12 Hrs</td>
</tr>
<tr>
<td>Lab I</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>CORD Network Management</td>
<td></td>
</tr>
<tr>
<td>Lab II</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>CORD Virtual Networks</td>
<td></td>
</tr>
<tr>
<td>Lab III</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>CORD Services Framework</td>
<td></td>
</tr>
</tbody>
</table>
More Information

Software – https://guide.opencord.org

Community – https://wiki.opencord.org
VOLTHA hides PON-level details (T-CONT, GEM ports, OMCI etc.) from the SDN controller, and abstracts each PON as a pseudo-Ethernet switch easily programmed by the SDN controller.

VOLTHA northbound

VOLTHA core

VOLTHA southbound adapters

Common control and management framework shared by all OLTs & ONUs
Trellis

API (CLI + REST + Java)

- AAA Control
- Fabric Control
- Mcast Control
- DHCP Relay
- vRouter Control

Flow Objectives API

SDN Controller (ONOS Cluster)

- NETCONF
- OpenFlow 1.3

Bare-metal Open-source

- White Box

OCP Software - ONL ONIE

- Indigo OF Agent
- OF-DPA
- OF-DPA API
- BRCM SDK API
- BRCM ASIC

OCP Bare Metal Hardware

Switch software stack